skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Clone detection techniques have been explored for decades. Recently, deep learning techniques has been adopted to improve the code representation capability, and improve the state-of-the-art in code clone detection. These approaches usually require a transformation from AST to binary tree to incorporate syntactical information, which introduces overheads. Moreover, these approaches conduct term-embedding, which requires large training datasets. In this paper, we introduce a tree embedding technique to conduct clone detection. Our approach first conducts tree embedding to obtain a node vector for each intermediate node in the AST, which captures the structure information of ASTs. Then we compose a tree vector from its involving node vectors using a lightweight method. Lastly Euclidean distances between tree vectors are measured to determine code clones. We implement our approach in a tool called TECCD and conduct an evaluation using the BigCloneBench (BCB) and 7 other large scale Java projects. The results show that our approach achieves good accuracy and recall and outperforms existing approaches. 
    more » « less